清墨橼提示您:看后求收藏(第10章 消逝的光芒,崖荒,清墨橼,镇魂小说网),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
人活着真不容易呀!最近的生活实在有些忙碌,事情有点太多了,处理不过来。心思不能全部放在小说上,让小说看起来有些不舒服,同时也是实在没有任何灵感接着往下写了,之前想多写一些也写不出来。
剧情基本才刚开始,我会趁五一的时间将剧情从新梳理一遍,若是有必要的话,会在后续的章节里面插入一到两张介绍暗线剧情的内容。
请各位耐心的朋友们先等等吧,等到五一之后,小说会继续更新的,要是有好同志看到这里,请帮忙点个催更,拜托了。
再次声明,不需要任何礼物,但是我还是想要一点人气,想让更多的人看到这部小说,应该算得上是每个小说作者都想做的事情了吧。
若是看完的朋友们觉得小说写的还可以看的话,不妨帮忙向周围人推荐一下。若是觉得小说写的比较难以接受的话,完全可以在小说评论区里面或者章节评论里面写出来。
你们的所有评论我都能看得到,正所谓独木难支,没有人帮扶,靠一个人哪里能写得出好看的小说呢?
你们发表的是自己的看法,作为作者,最需要的就是读者的看法,这些都是帮助我更好的更新这本小说的必要一步。
同时再次感谢一直跟读的读者,这本小说本来就是第一次写,文笔不太好,而且剧情比较琐碎,还有不少暗线,导致看着可能非常凌乱。
等到五一假期之后,小说就会马上更新的,但是依然有一个请求,就是请各位务必随手点了催更,拜托拜托!
小说章节需要一千字才能发表,所以下面的东西都不用看了,祝各位读者生活顺心美满,好好吃饭哦!
——————
“欧几里得模型” 通常指基于古希腊数学家欧几里得(Euclid)的几何理论构建的数学模型,核心是欧几里得几何(Euclidean Geometry)。这一模型是古典几何学的基石,也是人类最早系统化的公理化数学体系之一。以下从多个维度解析其内涵:
一、欧几里得几何的核心框架
欧几里得在《几何原本》中以公理化方法构建几何体系,通过少数几条不证自明的公理(Axioms)和公设(postulates),推导出整个平面和空间几何的定理。其核心包括:
1. 五大公设(几何专属)
直线公设:任意两点可通过直线连接。
线段延长公设:线段可无限延长为直线。
圆公设:以任意点为圆心、任意长度为半径可作圆。
直角公设:所有直角彼此相等。
平行公设(第五公设):过直线外一点,有且仅有一条直线与已知直线平行。
(注:第五公设的争议催生了非欧几何,如罗氏几何和黎曼几何。)
2. 五大公理(通用逻辑原则)
等于同量的量彼此相等。
等量加等量,其和相等。
等量减等量,其差相等。
彼此重合的图形全等。
整体大于部分。
3. 研究对象
本章未完,点击下一页继续阅读。